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Abstract

In this paper we extend the special relativistic hydrodynamic (SRHD) equations [L.D. Landau, E.M. Lifshitz, Fluid

Mechanics, Pergamon, New York, 1987] and as a limiting case the ultra-relativistic hydrodynamic equations [M.

Kunik, S. Qamar, G. Warnecke, J. Comput. Phys. 187 (2003) 572–596] to the special relativistic magnetohydrodynam-

ics (SRMHD). We derive a flux splitting method based on gas-kinetic theory in order to solve these equations in one

space dimension. The scheme is based on the direct splitting of macroscopic flux functions with consideration of particle

transport. At the same time, particle ‘‘collisions’’ are implemented in the free transport process to reduce numerical dis-

sipation. To achieve high-order accuracy we use a MUSCL-type initial reconstruction and Runge–Kutta time stepping

method. For the direct comparison of the numerical results, we also solve the SRMHD equations with the well-devel-

oped second-order central schemes. The 1D computations reported in this paper have comparable accuracy to the

already published results. The results verify the desired accuracy, high resolution, and robustness of the kinetic flux

splitting method and central schemes.
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1. Introduction

The numerical study of the evolution of multidimensional relativistic flows turns out to be a topic of

crucial interest in, at least, two different scientific fields: nuclear physics for studies of the properties of
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the equation of state for nuclear matter via comparison of simulations and experiments of heavy ions col-

lisions and in relativistic astrophysics. The field of numerical astrophysics is recently undergoing an extraor-

dinary development after important efforts in building up robust codes able to describe many different

astrophysical scenarios. Astrophysical sources of high-energy radiation and particles involve the presence

of relativistic motions in magnetized plasmas. For example, the radio emission from extra galactic jets,
especially from the terminal radio lobes, or from plerion-like supernova remnants is due to synchrotron

radiation produced by relativistic electron spiraling around magnetic field lines, thus indicating the presence

of significant magnetic fields. Strong magnetic fields are supposed to play an essential role in converting the

energy of accreting material around super-massive black holes at the center of active galactic nuclie (AGNs)

into powerful relativistic jets escaping along open field lines, see Begelman et al. [8]. Similar phenomena

may be at work in the galactic compact X-ray sources known as microquasars, see Mirabel and Rodrigues

[26]. The other sources of astrophysical phenomena involving magnetic field are accretion into compact ob-

jects, collision of compact objects, stellar core collapse and recent models of gamma-ray bursts (GRBs), see
Mészáros and Rees [27]. Thus, due to the extreme complexity and richness of the possible effects arising in

relativistic plasma physics, the improvement in the efficiency of both relativistic hydrodynamics (RHD) and

relativistic magnetohydrodynamics (RMHD) codes becomes necessary.

In recent years, the development of classical MHD codes has attracted much attention. This attention is

very natural and necessary since there are several phenomena in astrophysics that require magnetohydro-

dynamic treatment. Most of the authors considered Godunov-type schemes for this purpose that were

found to be very useful here. Early numerical methods were based on a flux corrected transport (FCT) for-

mulation [12] or on artificial viscosity formulations, see Evans and Hawley [15] as well as Stone and Nor-
man [32]. More recently, the need for robustness and reliability in MHD simulations led several authors to

formulate numerical MHD schemes that were based on high-order Godunov-type schemes. Several efforts

along these lines can be found in the work of Balsara [5,7], Dai and Woodward [11], Londrillo and Del

Zanna [23], Roe and Balsara [29], and Ryu et al. [30].

There exist several astrophysical sources of high-energy radiation and particles that involve the presence

of relativistic motions in magnetized plasma. During last decade several upwind high-resolution shock-

capturing (HRSC) schemes, which were originally derived for the non-relativistic flows, were also applied

to RHD and RMHD equations too. These schemes achieve both high accuracy in smooth regions of the
simulated flow and sharp discontinuous profiles in the shocks, for example Aloy et al. [4], Balsara [6],

Donat and Marquina [13], Eulderink and Mellema [14], Martı́ and Müller [24,25], Schneider et al. [31],

and Del Zana et al. [35,36].

On the other hand, Kunik et al. [18–20] have used kinetic schemes in order to solve the relativistic Euler

equations. These relativistic Euler equations result directly from the moments of the relativistic Jüttner

equilibrium phase density [17] without taking any approximations. In these papers, we have derived the ul-

tra-relativistic and general form of special relativistic Euler equations. The general form of special relativ-

istic Euler equations covers the whole range from classical to the ultra-relativistic Euler equations. The
ultra-relativistic limit can be obtained in the limit of very small particles rest mass or very high temperature.

Mathematically the limit of very small rest mass is very easy. We have used the same limit in our paper [18]

in order to get the ultra-relativistic phase density from the general phase density. Apart from the above

mentioned regimes the ultra-relativistic phase density is not justified because it will not recover the correct

constitutive relations. In this paper we will also extend the ultra-relativistic Euler equations as a special case

to the ultra-relativistic MHD. As mentioned before, these Euler equations have a kinetic phase density

which is a simplified form of the general Jüttner [17] phase density in the ultra-relativistic limit.

The construction of gas-kinetic scheme for the classical MHD equations began with Croisille et al. [10],
where a MHD kinetic flux-vector splitting (KFVS) solver was obtained by simply extending the KFVS flux

function of the classical Euler equations. The above MHD KFVS scheme is very robust and reliable, but

overdiffusive, especially in the contact discontinuity regions, see [13]. Recently, Xu [34] as well as Tang and
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Xu [33] have constructed a new BGK-type Kinetic flux splitting method which accounts for the particle

collisions at the cell interface. This method was also used by Kunik et al. [20] in order to solve ultra-rela-

tivistic Euler equations. The main advantage of the kinetic schemes over other schemes is that kinetic

schemes ensures the positivity of pressure and energy density. Furthermore, the kinetic approach is more

close to the physics of the given RMHD system.
In this paper we extend the BGK-type KFVS scheme to the special relativistic magnetohydrodynamics

(SRMHD) by using the approach of Xu [34] which he used for the classical MHD equations. The scheme is

based on the BGK-type formulation, the KFVS SRMHD solver is generalized by including particle colli-

sions. As a result the new scheme reduces the numerical dissipation significantly and gives a more accurate

representation of wave interactions. In contrast to the classical case there are several difficulties in solving

the SRMHD equations. To obtain the primitive variables from the conserved variable is not as straight for-

ward as in classical MHD case. We will use the idea of Del Zanna et al. [36] in order to obtain the primitive

variables from the conserved variables. For the reader�s convenience we will also give a short introduction
of the special relativistic Euler equations as well as kinetic phase density and its moments. Our model for

SRMHD consists of special relativistic Euler equations [21] or as a special case the ultra-relativistic Euler

equations [18], which are coupled with usual Maxwell equations, as we know that Maxwell equations are

inherently relativistic. In the relativistic MHD case the CFL condition is very simple. Every signal is

bounded by the speed of light, therefore it is natural to take Dt = Dx/2. Here Dt is the time step and Dx
is the cell width in the 1D spatial domain.

For the direct comparison of the kinetic method results, we also solve the SRMHD equations by using

central schemes of Nessyahu and Tadmor [28]. These central schemes are based on the evolution of cell
averages over staggered grids. Central schemes eliminate the need for a detailed knowledge of the eigen-

structure of the Jacobian matrix. Instead of (approximate) Riemann solvers which are the building blocks

of upwind schemes, simple quadrature formulae are used for the time evolution of central schemes. This

approach not only saves the costly characteristic decomposition of the Jacobians, but in fact, it allows

us to completely avoid the costly evaluation of 7 · 7 Jacobian matrix in one-space dimension. The resulting

central schemes are black-box, Jacobian-free MHD solvers whose sole input is the computed MHD fluxes.

Despite of their simplicity these central schemes are able to resolve accurately the complex structure of 1D

waves. We demonstrate this with a series of numerical simulations.
This paper has seven sections. In Section 2, we give a brief introduction to special relativistic kinetic the-

ory and special relativistic hydrodynamics (SRHD). In Section 3, we derive relativistic MHD equations

which we have to be solved by kinetic and central schemes. In Section 4, we construct kinetic flux splitting

method in one space dimension for the solution of relativistic MHD equations. In Section 5, we give a brief

introduction to central schemes. Section 6, is dedicated to the numerical test computations. Lastly in Sec-

tion 7, we give conclusion and remarks.
2. The special relativistic hydrodynamics

Before going to the SRMHD, we first introduce the relativistic kinetic theory and the special relativistic

Euler equations. For further details about it the reader is referred to [18,19,21].

The coordinates with respect to a fixed reference frame are given by the four-vector xl, l 2 {0,1,2,3},

where x0 = t is the observer time. The three-vector x = xi, i 2 {1,2,3}, denotes the spatial coordinates of

any event xl. For simplicity we set c = �h = kB = 1. Furthermore, we assume that the metric tensor glm is

given by a diagonal matrix glm = glm = diag(�1,1,1,1).
The four-momentum of the gas particles ql = (q0,q) with q = qi, i 2 {1,2,3} is a kinetic variable. How-

ever, not all components of the four-momentum are independent, because
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qlql ¼ �m2; ð1Þ
where m is the rest mass of the particles. The invariant volume element dx of the momentum space is given

by
dx ¼ 1

q0
dq1 dq2 dq3 ¼ 1

q0
d3q: ð2Þ
The phase density f(xl,qm) ” f(t,x,q) gives the number density of particles in the element dx at xl.

Next we introduce the macroscopic four-velocity ul by
ul ¼ 1

q
Nl; q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N mN m

p
; ð3Þ
so that ulul = �1 and q is a particle density. The fluid velocities vi are given by
ul ¼ cð1; viÞ; c ¼ u0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p ; i ¼ 1; 2; 3; ð4Þ
where c is called the Lorentz factor.

Using the Einstein summation convention the equations describing the motion of a relativistic fluid are

given by the five conservation laws:
olNl ¼ 0; olT lm ¼ 0: ð5Þ

Here, Nl is a particle density four-vector and Tlm is energy momentum tensor. These tensors are given by
Nl ¼ qul and T lm ¼ ðeþ pÞulum þ pglm; ð6Þ

where q is rest mass density, p is pressure and e is internal energy. In order to close the system we have the

following relation for the energy density
e ¼ qþ p
C� 1

; ð7Þ
where C is adiabatic index, and C ¼ 5
3
in the mildly relativistic case, while C ¼ 4

3
in the ultra-relativistic case.

Also in the ultra-relativistic case the rest mass density in the (7) is zero hence we get e = 3p in the ultra-

relativistic case.
In order to correctly recover the constitute relations (6), we have to modify the ultra-relativistic phase

density and its moments, see our papers [18,19]. This ultra-relativistic phase density was obtained from

the Jüttner phase density [17] in the ultra-relativistic limit [18]. In the ultra-limit the rest mass is zero,

i.e., m = 0, so that
q0 � jqj and dx ¼ d3q
jqj : ð8Þ
The modified phase density is given by
fJ ðq; T ; u; qÞ ¼
qk3

8p
expðkulqlÞ ¼

qk3

8p
exp �kjqjc 1� v � q

jqj

� �� �
: ð9Þ
Here, k = 4q/(e + p) is the normalization factor. The only modification we made in the phase density is the

change of the normalization factor k. Since in the ultra case e = 3p, therefore we get back the normalization

factor k = 1/T in the ultra-limit, where T denotes the temperature which is defined by T = p/q. Next the
modified moments of the above phase density are given as
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N l ¼ N lðt;xÞ ¼
Z
3

qlf ðt; x; qÞ d
3q
jqj ; ð10Þ

T lm ¼ T lmðt; xÞ ¼
Z
3

ðqlqm � dglmÞf ðt; x; qÞ d
3q
jqj ; ð11Þ
where
d ¼ e� 3p
2qk

: ð12Þ
The only modification is the additional term in the energy momentum tensor, i.e., the term dglm. The mod-

ified moments (10) and (11) are able to recover the constitutive relations (6). However, the constitutive rela-

tions (6) are still the limiting case of the general consitutive relations given in [19]. In [19] the phase density

for the general constitutive relations has M(b) as normalization function which is expressed by using Bessel

functions. For the ultra-case the term dglm is identically zero and we get back the moments for the ultra-case

[18]. Furthermore, we are able to obtain an important reduction of the above moment integrals which is

presented in the Appendix A.
3. Ideal SRMHD equations

Here we will use the same notations which were used in the previous section for the SRHD equations.

The modifications needed to take electromagnetic forces into account are, like in classical MHD, the inclu-

sion of extra terms in the energy–momentum conservation law and a new equation for the magnetic field, to

be derived from the Maxwell equations. Our derivation follows the notations used in Anile [1], Balsra [6]
and del Zanna et al. [36].

In order to get the SRMHD equation we have to add the electromagnetic contribution to the energy

momentum tensor. Therefore, the constitutive relations (6) become
N l ¼ qul and T lm ¼ ðeþ pÞulum þ pglm þ F l
aF

ma � 1

4
glmF abF ab; ð13Þ
where we have assumed that 4p ! 1. Here Flm denotes the antisymmetric electromagnetic field tensor which
satisfies the Maxwell equations
olF lm ¼ �J m; olF �lm ¼ 0; ð14Þ
where Jm is the four-current containing the source terms, constrained by the condition olJ
l = 0. Here

F �lm ¼ 1
2
�lmabF ab is called dual of Flm, where �lmab is the Levi–Civita alternating pseudo-tensor 1. Note that
lmab ¼
þ1 if lmab is an even premutation of 0123;

�1 if lmab is an odd premutation of 0123;

0 otherwise:

8><
>:
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F lm ¼

0 E1 E2 E3

�E1 0 B3 �B2

�E2 �B3 0 B1

�E3 B2 �B1 0

0
BBB@

1
CCCA; ð15Þ
which means that
F 0i ¼ Ei; F ij ¼ �ijkBk for i; j; k ¼ 1; 2; 3; i 6¼ k; j 6¼ k: ð16Þ

Similarly, F*0i = Bi, F*ij = ��ijkEk. Here, Bi and Ei denote the components of the magnetic field and electric

field, respectively.

For an infinitely conducting (perfect MHD) fluid, the electric field in the fluid�s frame must vanish [22],

i.e.,
F lmum ¼ 0: ð17Þ

This corresponds to the usual MHD condition E + v · B = 0. Note that the other approximation needed to

derive the classical MHD equations, namely to neglect the displacement current is not imposed in RMHD.

This implies that the current, to be measured from (14), now depends on the time derivative of the electric

field too: J = $ · B � otE.

The equations written so far are not easily compared with their MHD equivalent, due to the presence of

the electromagnetic tensor and of its dual, both containing the electric field. However, due to Eq. (18), E

may be substituted everywhere by defining the electromagnetic induction four-vector as bl = F*lmum, that

allows to write the electromagnetic tensor in terms of ul and bl alone, i.e.,
F lm ¼ �ablmbaub: ð18Þ

The component of the magnetic field four-vector are
bl ¼ cðv � BÞ;B=cþ cðv � BÞv½ �: ð19Þ

To ensure that the electric field in the plasma�s rest frame is zero it has to satisfy the constraint
blul ¼ 0: ð20Þ

The above constraint and the relation ulul = �1 implies that |b| = blb

l > 0, hence bl is a space-like vector

with
jbj2 ¼ B2=c2 þ ðv � BÞ2: ð21Þ

Due to the above definitions, the complete set of SRMHD equations becomes
olðqulÞ ¼ 0;

ol½ððeþ pÞ þ jbj2Þulum � blbm þ ðp þ jbj2=2Þglm� ¼ 0;

olðulbm � umblÞ ¼ 0:

ð22Þ
The first equation represent the mass conservation, the second one is energy–momentum conservation and

the last one is a magnetic induction equation. We can get back our SRHD equations by simply letting

bl = 0. In order to learn about the characteristic structure of the 1D RMHD system, the reader is refered

to Anile and Pennisi [1,2].

In what follows we will use vx, y,x interchangeable with v1, 2, 3. Similarly, we will use Bx, y, z interchange-
able with B1, 2, 3.

For numerical work it is useful to treat the equations on a dimension-by-dimension basis. The presence

of an underlying computational grid force one to a dimension-by-dimension view. For x-directional
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variation we freeze the y- and z-directional variations. For x-directional variations we see from (22)3 that

the magnetic field component in the x-direction is a constant and does not have any temporal variation.

This yields another constraint for x-directional variation. Thus there are only seven equations that need

to be evolved in time when considering x-directional variations. In a formal vector notation they can be

written as
oW
ot

þ oF ðW Þ
ox

¼ 0; ð23Þ
where
W ¼

D

Q1

Q2

Q3

E

By

BZ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼

qc

ðeþ p þ jbj2Þc2vx � b0b1

ðeþ p þ jbj2Þc2vy � b0b2

ðeþ p þ jbj2Þc2vz � b0b3

ðeþ p þ jbj2Þc2 � ðp þ jbj2=2Þ � ðb0Þ2

By

BZ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð24Þ
and
F ðW Þ ¼

qcvx
ðeþ p þ jbj2Þc2v2x þ ðp þ jbj2=2Þ � ðb1Þ2

ðeþ p þ jbj2Þc2vxvy � b1b2

ðeþ p þ jbj2Þc2vxvz � b1b3

ðeþ p þ jbj2Þc2vx � b0b1

Byvx � Bxvy
Bzvx � Bxvz

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ 0: ð25Þ
In order to get primitive variables from the conserved variables we use the idea of Del Zanna et al. [36]. The
vector Q becomes
Q ¼ ðU þ B2Þv� ðv � BÞB; ð26Þ

and by taking the projection along B we can obtain
S � ðQ � BÞ ¼ Uðv � BÞ; ð27Þ

where U = wc2, w = e + p = q + C1p, and C1 = C/(C � 1).

A 2 · 2 system can be obtained by taking the square of (26) and by taking the equation for total energy

E:
U 2v2 þ ð2U þ B2ÞB2v2? �Q2 ¼ 0; ð28Þ

U � p þ 1

2
B2 þ 1

2
B2v2? � E ¼ 0; ð29Þ
where B2v2? � B2v2 � ðv � BÞ2 ¼ B2v2 � S2=U 2. If we use the relations
q ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
; p ¼ ½ð1� v2ÞU � q�=C1; ð30Þ
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it comes out that all the quantities appearing in the system are written in terms of the two unknown v2 (or

equivalently c) and U. Once these variables are found numerically, the primitive quantities will be easily

derived through (30) and by inverting (26), that is,
vk ¼
1

U þ B2
Qk þ

S
U
Bk

� �
; k ¼ x; y; z: ð31Þ
Note that Eqs. (26)–(30) only work for polytropic gases. In order to bring the system down to just a single

non-linear equation, which as to be solved numerically, it is useful to define B2v2? ¼ T 2=ðU þ B2Þ2 in Eqs.
(28) and (29). Here T2 = B2Q2 � S2 is a new, but given, parameter. Then we write Eq. (29) as a third-order

algebraic equation for U with coefficients that depend on v2 alone
1� 1� v2

C1

� �
U � E þ q

C1

þ B2

2

� �
ðU þ B2Þ2 þ T 2

2
¼ 0; ð32Þ
which can be solved analytically, see Abramowitz and Stegun [3]. Note that the cubic polynomial on the left
hand side has a positive local maximum in U = �B2. Thus, since we know that at least one root must be

positive, all the other roots of above equation are actually bound to be real, it was found that the largest

one gives the correct results, see Del Zanna et al. [36].

In order to get the ultra-relativistic MHD equations we have to use e ¼ 3p; C ¼ 3
4
; and C1 ¼ 4 in above

equations. Also in the ultra-relativistic MHD case the rest mass density q is zero in Eq. (32). The resulting

MHD equations are then called ultra-relativistic magnetohydrodynamic (URMHD) equations.

The function U(g) with g = v2, is thus available together with its derivatives U 0(g), so the final step is to

apply Newton�s method to find the root of FðgÞ ¼ 0, where
FðgÞ ¼ U 2gþ ð2U þ B2Þ T 2

ðU þ B2Þ2
�Q2 ð33Þ
and
F0ðgÞ ¼ U 2 þ 2UU 0 g� T 2

ðU þ B2Þ3

 !
: ð34Þ
4. Kinetic flux splitting method

In gas-kinetic theory, the flux is associated with the particle motion across a cell interface. For 1D flow in

the x-direction, the particle motion in this direction determines the flux function. Other quantities, such as

y-direction velocity, thermal energy, density, magnetic field and pressure can be considered as passive sca-

lars which are transported with the x-direction particle velocity. Normally particles are randomly distrib-

uted around the average velocity. From statistical mechanics, the moving particles in the x-direction can be
most favorably described by the relativistic Maxwellian (9), i.e., Jüttner phase density. For SRMHD case

we will use the same technique which was used by Xu [34] in the case of classical MHD equations. Also we

have already used this method in order to derive kinetic flux splitting method for the ultra-relativistic Euler

equations [20]. We refer the reader to these references for further details.

The transport of any flow quantity is basically due to the movement of particles. With the phase density

fJ in (9), we can split the particles into two groups. One group is moving to the right with vx > 0 and the

other group is moving to the left with vx < 0. For the present 1D variation of the SRMHD equations it is

sufficient to consider only the 1D phase density. As the normalization factor k in the reduced moment
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integrals (A.3) and (A.4) drops out, therefore we do not need to modify the normalization factor. Before

splitting the fluxes we introduce the new coordinates �1 6 n 6 1, 0 6 # 6 2p,
a1 ¼ n a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
sin#; a3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
cos#:
Introducing these new coordinates in (A.3)1 and (A.4) we get in the 1D case
hu0i ¼ 1 ¼
Z 1

�1

1

2c2ð1� nvxÞ2
dn; hu1i ¼ vx ¼

Z 1

�1

n

2c3ð1� nvxÞ3
dn: ð35Þ
The above two moments are sufficient to split all the fluxes. In order to simplify the notation we define
hu0iþ ¼
Z 1

0

1

2c2ð1� nvxÞ2
dn; hu0i� ¼

Z 0

�1

1

2c2ð1� nvxÞ2
dn: ð36Þ
Similarly,
hu1iþ ¼
Z 1

0

n

2c3ð1� nvxÞ3
dn; hu1i� ¼

Z 0

�1

n

2c3ð1� nvxÞ3
dn: ð37Þ
Here we can see that the resulting splitted moment integrals are free from the normalization factor c. Also

both SRHD [21] and ultra-relativistic Euler equations [18] have the same continuity equation. These two

are the main reason to use the above moments for the splitting of both SRHD and ultra-relativistic Euler

equations fluxes.

After having the above definitions, we are ready to split the SRMHD flux function (25),
F ¼

qcvx
ðwþ jbj2Þc2v2x þ ðp þ jbj2=2Þ � ðb1Þ2

ðwþ jbj2Þc2vxvy � b1b2

ðwþ jbj2Þc2vxvz � b1b3

ðwþ jbj2Þc2vx � b0b1

Byvx � Bxvy
Bzvx � Bxvz

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ F þ
f þ F �

f ; ð38Þ
where w = e + p and
F �
f ¼ hu1i�

qc

ðwþ jbj2Þc2vx
ðwþ jbj2Þc2vy
ðwþ jbj2Þc2vz
ðwþ jbj2Þc2

By

Bz

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

þ hu0i�

0

ðp þ jbj2=2Þ � ðb1Þ2

�b1b2

�b1b3

�b0b1

�Bxvy
�Bxvz

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð39Þ
When we conclude the above splitting of fluxes, the free transport flux for the SRMHD equations at a cell

interface becomes
F f
iþ1

2
¼ F þ

i;f þ F �
iþ1;f ; ð40Þ
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where ‘‘f’’ is used to denote the above free transport model. The KFVS-type MHD method is very robust,

but over diffusive, especially in the case with the coarse mesh. To reduce numerical dissipation Xu [34], in

the classical MHD case, implemented a particle collision mechanism in above flux transport process. The

idea is to obtain an equilibrium state W iþ1
2
at the cell interface by combining the left and right moving beams

and use this state to get an equilibrium flux function F eðW iþ1
2
Þ through the flux function definition in (38).

Using (24), the equilibrium state at the cell interface can be obtained as
W iþ1
2
¼

qc

ðwþ jbj2Þc2vx � b0b1

ðwþ jbj2Þc2vy � b0b2

ðwþ jbj2Þc2vz � b0b3

ðwþ jbj2Þc2 � ðp þ jbj2=2Þ � ðb0Þ2

By

BZ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ W þ
i þ W �

iþ1; ð41Þ
where
W �
i ¼

qchu0i�
ðwþ jbj2Þc2hu1i� � b0b1hu0i�
ðwþ jbj2Þc2vy � b0b2
h i

hu0i�

ðwþ jbj2Þc2vz � b0b3
h i

hu0i�

ðwþ jbj2Þc2 � ðp þ jbj2=2Þ � ðb0Þ2
h i

hu0i�
Byhu0i�
BZhu0i�

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

i

: ð42Þ
With the above averaged macroscopic variables W iþ1
2
, the equilibrium flux can be obtained as
F e
iþ1

2
¼ F eðW iþ1

2
Þ ¼

qcvx

ðwþ jbj2Þc2v2x þ ðp þ jbj2=2Þ � ðb1Þ2

ðwþ jbj2Þc2vxvy � b
1
b
2

ðwþ jbj2Þc2vxvz � b
1
b
3

ðwþ jbj2Þc2vx � b
0
b
1

Byvx � Bxvy
Bzvx � Bxvz

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; ð43Þ
where Bx ¼ Bx is constant in 1D case. The final flux function is a combination of non-equilibrium and equi-

librium flux functions
F iþ1
2
¼ vF f

iþ1
2
þ ð1� vÞF e

iþ1
2
; ð44Þ
where v is an adaptive parameter, see [34]. In the first order scheme v can be fixed at, say 0.7 or 0.5, in the

numerical calculations. Theoretically v should depend on the real flow situations: in equilibrium and
smooth regions, the use of v � 0 is physically reasonable, and in the regions with discontinuities, v should

be close to 1 in order to have enough numerical dissipation to recover smooth shock transition. A possible
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choice for g in a high-order scheme is to consider it as a function of the pressure difference, such as the

switch function in the JST scheme [16], see Xu [34] for further details.

The integration of (23) over the cell ½xi�1
2
; xiþ1

2
� gives the following semi-discrete kinetic upwind scheme:
dW i

dt
¼ �

F iþ1
2
� F i�1

2

Dx
; ð45Þ
where F iþ1
2
is the fluxes at the cell boundary xiþ1

2
and is given by (44). Here Dx represent the cell width. The

above scheme is only first order accurate in space. To get high-order accuracy, the initial reconstruction

strategy must be applied to interpolate the cell averaged variables W n
i . For example the linear interpolation
W ðtn; xÞ ¼ W n
i þ W x

i

ðx� xiÞ
Dx

; ð46Þ
can be constructed to approximate the cell averaged variables W n
i at the beginning of each time step tn, where

W x
i is approximate slope. The extreme points x = 0 and x = Dx, in local coordinates correspond to the intercell

boundaries in general coordinates xi�1
2
and xiþ1

2
, respectively. The values Wi at the extreme points are
W L
i ¼ W n

i �
1

2
W x

i ; W R
i ¼ W n

i þ
1

2
W x

i : ð47Þ
To avoid oscillations in the reconstructed data, the slope W x
i is obtained from the min-mode limiter as

follows:
W x
i ¼ MM hDW iþ1

2
;
h
2
ðDW i�1

2
þ DW iþ1

2
Þ; hDW i�1

2

� �
:

Here, D denotes the central differencing, DW iþ1
2
¼ W iþ1 � W i, and MM denotes the min-mode non-linear

limiter
MMfx1; x2; . . .g ¼

min
i
fxig if xi > 0 8i;

max
i

fxig if xi < 0 8i;

0 otherwise;

8>><
>>: ð48Þ
where 1 6 h 6 2 is a parameter. Based on the above reconstruction, a high spatial resolution kinetic

SRMHD solver becomes
dW i

dt
¼ �

F iþ1
2
ðW L

iþ1;W
R
i Þ � F i�1

2
ðW L

i ;W
R
i�1Þ

Dx
: ð49Þ
To improve the temporal accuracy, we use a second-order TVD Runge–Kutta scheme to solve (49). Denot-

ing the right-hand side of (49) as L(W), a second-order TVD Runge–Kutta scheme update W through the

following two stages:
W ð1Þ ¼ W n þ DtLðW nÞ; ð50Þ

W nþ1 ¼ 1

2
W n þ W ð1Þ þ DtLðW ð1ÞÞ
� �

: ð51Þ
5. Central schemes

The intrinsic complexity of the SRMHD equations suggests the class of central schemes as an efficient

alternative for the class of upwind schemes, for computing approximate solutions of Eqs. (23)–(25). The



S. Qamar, G. Warnecke / Journal of Computational Physics 205 (2005) 182–204 193
central schemes we use in this paper are based on the evolution of cell averages over staggered grids, see

Nessyahu and Tadmor [28]. Central schemes eliminate the need for a detailed knowledge of the eigen-struc-

ture of the Jacobian matrix. Instead of (approximate) Riemann solvers as building blocks for upwind

schemes, simple quadrature formulae are used for the time evolution of central schemes. This approach

not only saves the costly characteristic decomposition of the Jacobians, but in fact, it allows us to com-
pletely avoid the costly evaluation of 7 · 7 Jacobian matrix in one space dimension. The resulting central

schemes are black-box, Jacobian-free MHD solvers whose sole input is the computed MHD fluxes. Despite

of their simplicity these central schemes are able to resolve accurately the complex structure of 1D waves.

We demonstrate this with a series of numerical simulations. Central schemes have the following predictor-

corrector form [28]:
W
nþ1

2
i ¼ W n

i �
k
2
F xðW iÞ; ð52Þ

W
nþ1

iþ1
2
¼ 1

2
ðW n

i þ W n
iþ1Þ þ

1

8
ðW x

i � W x
iþ1Þ þ k F ðW nþ1

2
i Þ � F ðW nþ1

2

iþ1 Þ
h i

; ð53Þ
where W n
i are the cell averaged initial data, while W x

i and F x
i are the approximate slopes of the conservative

variables and fluxes, respectively. These slopes can be calculated from the same initial reconstruction and

min-mode formulae which are given by (46) and (48). Here k = Dt/Dx. For further details about these

schemes the reader is referred to the paper of Nessyahu and Tadmor [28].
6. Numerical case studies

In the following we present numerical test cases for the solution of the SRMHD equations in both
SRHD and ultra-relativistic cases. For the comparison we give the results of high-order central schemes.

In all numerical computation we have used a natural CFL condition Dt = Dx/2, as every signal is bounded

by the speed of light.

6.1. SRMHD equations

In this case the SRMHD equation consist of special relativistic Euler equations of [21] which are coupled

with Maxwell equations. All the test cases presented here are the same which were considered in Balsara [6]
and Del Zanna et al. [36]. In all the problems given in Table 1 we use C ¼ 5

3
which was also used by [6,36]

except for the first one where [6] used C = 2. Also for better comparison we use the same 1600 mesh points

which were used by [6,36]. We give the results of both kinetic and central schemes. Since in the 1D SRMHD

case the solenoidal constraint $ ÆB = 0 is automatically satisfied and transverse magnetic field components

behave essentially like the other conservative variables therefore we can directly apply the kinetic method

and central schemes as black-box solvers. The shock tube tests shown here illustrate the ability of the both

codes to handle degenerate cases where the system is no longer strictly hyperbolic due to the coincidence of

two or more eigenvalues. The results also show the ability of the code to separate the various Riemann dis-
continuities or rarefaction waves, which are more numerous in the magnetized case (up to seven) rather

than in the fluid case (just three).

The results related to the first test are shown in Fig. 1. This is a relativistic analog of the Brio and Wu [9]

test problem. It shows a left-going fast rarefaction wave, a left-going compound wave, a contact disconti-

nuity, a right-going slow shock and a right going fast rarefaction wave. A modest Lorentz factor with a

maximum value of about 1.46 is established indicating that a reasonably relativistic flow has developed.

All the waves that developed in this example can be clearly identified. The results obtained from the kinetic



Table 1

Parameters for Riemann problems

Test q p vx vy vz By Bz Bx ts

1 L 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.5 0.4

1 R 0.125 0.1 0.0 0.0 0.0 �1.0 0.0 – –

2 L 1.0 30.0 0.0 0.0 0.0 6.0 6.0 5.0 0.4

2 R 1.0 1.0 0.0 0.0 0.0 0.7 0.7 – –

3 L 1.0 1000.0 0.0 0.0 0.0 7.0 7.0 10.0 0.4

3 R 1.0 0.1 0.0 0.0 0.0 0.7 0.7 – –

4 L 1.0 0.1 0.999 0.0 0.0 7.0 7.0 10.0 0.4

4 R 1.0 0.1 �0.999 0.0 0.0 �7.0 �7.0 – –

5 L 1.08 0.95 0.4 0.3 0.2 0.3 0.3 2.0 0.55

5 R 1.0 1.0 �0.45 �0.2 0.2 �0.7 0.5 – –
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method and central scheme give comparable accuracy to that of [6,36]. We use v = 0.5 in the kinetic scheme.
Both the kinetic and central schemes capture all the waves very perfectly. Although central central schemes

are believed to be very diffusive, here we see that the schemes worked very well.

Figs. 2 and 3 are blast wave examples which are again taken from [6]. The first blast wave has a moderate

jump, while the second has a large pressure jump of the order 104 which produces a relativistic flow with a

maximum Lorentz factor of c = 3.4. In these cases our results are again comparable that of [6,36]. All the

waves that developed in these Riemann problems can be clearly identified. In Fig. 2 we have a left-going

fast rarefaction wave, a left-going slow rarefaction wave, a contact discontinuity, a right-going slow shock

and a right-going fast shock. The maximum value of the Lorentz factor in this example is 1.36 which indi-
cates that the problem is reasonably relativistic. Fig. 3 shows that a pair of left-going rarefaction waves also

appear in this case. The maximum value of the Lorentz factor in this case is 3.4 which indicates a strong

relativistic flow. The high Lorentz factor means that the relativistic length-contraction becomes more effec-

tive which causes compression of the structures moving to the right when viewed in the laboratory frame

which is also our computational grid. As a result we get under-resolved contacts and right-going shocks as

compared to Fig. 2. In Fig. 3 the jump in the density pulse obtained from the kinetic scheme, which is up to

8.7, for the parameter v = 0.7 has a better resolution as compared to the central schemes which is up to 7.8.

However, the kinetic scheme does not resolve it as well as in [6,36] with jumps up to 9.5. The same is the
case for the y-component for velocity and the magnetic field.

Fig. 4 shows the results of the fourth test case which was proposed by Balsara [6]. The two streams that

are approaching each other have an initial Lorentz factor of 22.366. Thus it is a strongly relativistic prob-

lem. The initial pressure in the stream is 10�6 time smaller than their initial energy density. Two extremely

strong fast shock waves are established in the flow, one is flowing to the right and the other to the left. We

also see that two slow shocks are established, one of which is right-going and the other is left-going. These

are seen to be switch-off slow shocks. Thus it is interesting to observe that the switch-off slow shocks in non-

relativistic MHD also have their relativistic analogs. Here we use the diffusive parameter v = 0.7 in the
kinetic scheme in order to reduce the post shock oscillations in the results. Our results are again of com-

parable accuracy to that of [6,36]. The good performance of our codes demonstrates the robustness and

accuracy of the schemes.

Fig. 5 shows a left-going fast shock, a left-going Alfvén wave, a left-going slow rarefaction fan, a contact

discontinuity, a right-going slow shock, a right-going Alfvén wave, and a right-going fast shock. We use

v = 0.5 in the kinetic scheme. The results obtained from both central and kinetic schemes have again com-

parable accuracy to that of [6].
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Fig. 1. Results of test 1 at time t = 0.4.
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6.2. Ultra-relativistic MHD (URMHD) equations

In this case the relativistic MHD equation consist of the ultra-relativistic Euler equations [18,19] which

are coupled with Maxwell�s equations. Here we consider two test problems. The initial data are the same as

in Test 2 and Test 4 of Table 1 for the same final time. Here we use the parameter v = 0.7 in the kinetic
scheme.

Fig. 6 is blast wave examples which is the same as in Test 2 of Table 1. The maximum value of the Lor-

entz factor in this case is 2.18, while it was 1.36 in the case of Fig. 2. Hence the relativistic length-contrac-

tion effects are more pronounced here as compared to Fig. 2 which causes compression of the structures

moving to the right when viewed in the laboratory frame which is also our computational grid. As a result

we get an under-resolved contact and right-going shocks as compared to Fig. 2. Since the basic equations

are different, therefore we can see that both solutions of Figs. 2 and 6 are quite different although both have

the same initial data and final time.
Fig. 7 shows the results of the second test case in ultra-MHD case. The initial data are the same as in

Test 4 of Table 1. If we compare these results to that of Fig. 4, we can see that the over all structure of

the results is same but there is a dramatic change in the heights of the slow and fast shocks. Also we

can see an increase in the minimum and maximum values of the y-component of velocity. Again the good

performance of our codes shows the robustness and accuracy of the schemes.
7. Conclusions

In this paper we have constructed a BGK-type KFVS scheme for the SRMHD equations. The numerical

flux function is constructed with consideration of particle transport across the cell interface and particle

‘‘collisions’’ are implemented in the transport process to reduce the numerical dissipation, especially at

the contact discontinuity. The parameter v, which determines the weights between the free transport and

equilibrium fluxes, takes constant values in the current study.

Since in the 1D SRMHD case the solenoidal constraint $ Æ B = 0 is automatically satisfied and the

transverse magnetic field components behave essentially like the other conservative variables, we can
directly apply the schemes as the black-box solvers. Thus the 1D SRMHD system is composed of seven

equations for the conserved variables in each direction. Due to the simplified nature of the relativistic

kinetic phase density in the ultra-relativistic limit, and due to the reason that the normalization factor

drops out in the split moment integrals for the velocity, we were able to use it for the splitting of the

fluxes in SRMHD and URMHD equations in a unified way. The results obtained were also compared

with the well developed central schemes. These central schemes are black-box, Jacobian-free MHD solv-

ers whose sole input is the computed MHD fluxes. Despite of their simplicity these central schemes are

able to resolve accurately the complex structure of 1D waves. All the test cases presented in this paper
are very hard tests for the validity of both methods due to the presence of high shock gradients and

relativistic effects in the simulations. Furthermore, we do not need to solve any complicated Riemann

solver which is usually needed in most of the shock capturing upwind schemes. It was found that both

kinetic and central schemes give comparable accuracy to the already published results in [6,36].

Although the results obtained from the upwind schemes are still better in accuracy, however the

schemes we are using here have less computational cost. Both schemes are robust, compact and easy

to implement on computer. The main advantage of the kinetic schemes over other schemes is that ki-

netic schemes ensures the positivity of pressure and energy density. Also the kinetic approach is more
related to the physics of the given PDE system. In this study we have only investigated the 1D

relativistic MHD equations. However, work is in progress to extend the schemes to the 2D case.
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Appendix A. Reduction of the volume integrals

Here we apply an important simplification to the volume integrals (10) and (11). We can see in (9) that

the fields q(t,x), p(t,x), e(t,x), and v(t,x) are not depending on |q|. This fact enables us to reduce the three-

fold volume integrals to twofold surface integrals by applying polar coordinates, see [18,20] for more de-

tails. Now using the relation
Z
R3

f ðjqjÞd3q ¼
I

oBð0;1Þ

Z 1

0

r2f ðrÞdr; ðA:1Þ
one get the following reduced surface integrals from the volume moment integrals (10) and (11). For abbre-

viation we introduce the unit vector n = q/|q|, then we have
Nlðt; xÞ ¼ 1

4p

I
oBð0;1Þ

nlqðt; xÞ
c3ð1� n � vðt; xÞÞ3

dSðnÞ; ðA:2Þ

T lmðt; xÞ ¼ 3

4p

I
oBð0;1Þ

nlnmðeþ pÞðt; xÞ
c4ð1� n � vðt; xÞÞ4

� 1

6

qkðt; xÞglmdðe; pÞ
c2ð1� n � vðt; xÞÞ2

 !
dSðnÞ: ðA:3Þ
Similarly one can easily see that
qðt; xÞ ¼ 2

k

Z
R3

f ðt; x; qÞ d
3q
jqj ¼

1

4p

I
oBð0;1Þ

qðt; xÞ
c2ð1� n � vðt; xÞÞ2

dSðnÞ: ðA:4Þ
Here n = q/|q| is the unit vector in direction of q and B(x0, r) is the ball with radius r and center x0 with

boundary oB(x0, r). Note that nl is not a four-vector and n0 = 1.
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